Letters to the Editor

Iodoplatination of a triple bond by platinum(w) complexes: formation of a σ-vinyl derivative

S. A. Mitchenko, a* V. P. Ananikov, V. V. Zamashchikova, and Yu. A. Ustynyukb

a Institute of Physical Organic Chemistry and Coal Chemistry, Ukrainian National Academy of Sciences, 70 ul. R. Luxembourg, 340114 Donetsk, Ukraine.

Fax: +7 (062 2) 55 3542. E-mail: mitchenk%infou.donetsk.ua@ussr.eu.net

b Department of Chemistry, M. V. Lomonosov Moscow State University, Vorob'evy Gory, 119899 Moscow, Russian Federation.

Fax: +7 (095) 939 1854

It has been shown previously 1 that hydroiodination of acetylene in aqueous iodide-containing solutions is catalyzed by platinum($_{1V}$), presumably $_{via}$ intermediate formation of $_{1v}^{1V}$ —CH=CHI $_{1v}^{1V}$ -complexes. Using propargyl alcohol as a model compound and in the presence of $_{1v}^{1V}$ (see Ref. 2), we obtained direct evidence for the occurrence of iodoplatination.

The addition of $HC=CCH_2OH$ (78 mg) to the K_2PtI_6 (426 mg)—KI (125 mg)— I_2 (38 mg)— H_2O (10 mL) system at 10—15 °C leads to the accumulation of a precipitate over a period of 6 h. Methanol extraction of this precipitate, preliminarily washed with aqueous solution of KI and water, after concentration affords a dark-brown compound (95 g). Found (%): C, 9.8; H, 1.4; I, 61.3; Pt, 23.0. Pt(CH=CI—CH₂OH)₂I₂(CH₃OH). Calculated (%): C, 9.92; H, 1.42; I, 59.98; Pt, 23.02.

Spectroscopic data confirm the formation of the σ-vinyl derivative: ^{1}H NMR (CD₃OD), δ: 6.44 (t, 2 H, $J_{\text{H,H}}$ = 2.0 Hz, $J_{\text{Pt,H}}$ = 31.1 Hz); 4.50 (d, 4 H, $J_{\text{H,H}}$ = 2.0 Hz, $J_{\text{Pt,H}}$ = 2.5 Hz); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (CD₃OD), δ: 100.9 (–CH=, $J_{\text{C,Pt}}$ = 801.4 Hz);

82.3 (—CI=, $J_{\text{C,Pt}}$ = 24.4 Hz); 72.6 (—CH₂—, $J_{\text{C,Pt}}$ = 30.2 Hz). IR (pellets with KBr), v/cm⁻¹: 3030 vw v(H—C=), 2920, 2860 w v(CH₂), 1630 m v(C=O), 1430 w v(CH₂—C=), 1000, 940 m σ (H—C=).

To elucidate the mutual orientation of the vinyl ligands, 2-deuteroimidazole (lm) was added to a solution of complex 1 obtained in CD₃OD. Addition of one Im molecule, according to the $^1\mathrm{H}$ NMR data, yields complex 2, in which the protons of the vinyl ligands are no longer equivalent. As this takes place, three groups of signals appear, 8: 7.40 (s, H(a), $J_{\mathrm{Pt},\mathrm{H}(a)}=80.5$ Hz); 6.82 (t, H(c), $J_{\mathrm{cd}}=2$ Hz, $J_{\mathrm{Pt},\mathrm{H}(c)}=18.2$ Hz); 4.62 (d, 2 H(d), $J_{\mathrm{cd}}=2$ Hz); 4.02 (dd, H(b) H (b), $J_{\mathrm{av,bb}}=3.2$ Hz); 7.64 (d, H(f), $J_{\mathrm{ef}}=1.7$ Hz, $J_{\mathrm{Pt},\mathrm{H}(f)}=9.0$ Hz); 7.24 (d, H(e), $J_{\mathrm{ef}}=1.7$ Hz, $J_{\mathrm{Pt},\mathrm{H}(e)}=2.6$ Hz) with an H(a): H(c): H(f) intensity ratio of 1:1:1, which corresponds to a trans-coordination of Im with respect to one of the vinyl ligands. Taking into account the strong trans-effect of vinyl ligands (cf. Ref. 3), structure 1 may be attributed to the initial complex, and the nonequivalence of the b and b' protons could be due to the formation of the cyclic structure of complex 2. The addition of DClO₄ to a solution of complex 2 results in regeneration of the starting compound 1.

Heating a solution of complex 1 in CD_3COOD for 3 h at 80 °C affords products of inner-sphere reductive elimination, viz., E,E-2,5-diiodohexa-2,4-diene-1,6-diol and PtI_2 . The E,E structure of the diene points to the trans-addition of platinum(IV) and I^- to the alkyne in the steps of iodoplatination.

References

- O. N. Temkin, G. K. Shestakov, and Yu. A. Treger, Atsetilen. Khimiya. Mekhanizmy reaktsii. Tekhnologiya [Acetylene. Chemistry. Reaction Mechanisms. Technology], Ed. O. M. Temkin, Khimiya, Moscow, 1991, 416 pp.
- 2. S. A. Mischenko, V. V. Zamashchikov, O. N. Pryadko, E. L. Kostenko, and A. A. Shubin, *Kinet. Katal.*, 1993, 34, 78 [Kinet. Catal., 1993, 34, No. 1 (Engl. Transl.)].
- 3. R. G. Pearson, Inorg. Chem., 1973, 12, 712.

Received August 2, 1995 in revised form November 27, 1995